超级电容器基础知识详解

发布 2019-08-16 22:31:20 阅读 2304

超级电容器是20世纪60年代发展起来的一种新型储能器件,并于80年代逐渐走向市场。自从1957 年美国人becker申报的第一项超级电容器专利以来,超级电容器的发展就不断推陈出新,直到1983 年,日本nec公司率先将超级电容器推向商业化市场,使得超级电容器引起人们的广泛兴趣,研究开发热潮席卷全球,不但技术水平日新月异,而且应用范围也不断扩大。

一、超级电容器的原理。

超级电容也称电化学电容,与传统静电电容器不同,主要表现在储存能量的多少上。作为能量的储存或输出装置,其储能的多少表现为电容量的大小。根据超级电容器储能的机理,其原理可分为:

1.在电极p 溶液界面通过电子和离子或偶极子的定向排列所产生的双电层电容器。

双电层理论由19 世纪末h elm h otz 等提出。关于双电层的代表理论和模型有好几种,其中以h elm h otz 模型最为简单且能够充分说明双电层电容器的工作原理。该模型认为金属表面上的静电荷将从溶液中吸收部分不规则的分配离子,使它们在电极p 溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。

于是,在电极上和溶液中就形成了两个电荷层,这就是我们通常所讲的双电层。双电层有储存电能量的作用,电容器的容量可以利用以下公式来计算:

式中,e为电容器的储能大小;c为电容器的电容量;v 为电容器的工作电压。由此可见,双电层电容器的容量与电极电势和材料本身的属性有关。通常为了形成稳定的双电层,一般采用导电性能良好的极化电极。

2.在电极表面或体相中的二维与准二维空间,电活性物质进行欠电位沉积,发生高度可逆的化学吸附、脱附或氧化还原反应,产生与电极充电电位有关的法拉第准电容器。

在电活性物质中,随着存在于法拉第电荷传递化学变化的电化学过程的进行,极化电极上发生欠电位沉积或发生氧化还原反应,充放电行为类似于电容器,而不同于二次电池,不同之处为:

(1)极化电极上的电压与电量几乎呈线性关系;

(2)当电压与时间成线性关系d v/d t=k时,电容器的充放电电流为一恒定值i=cd v/d t=ck.此过程为动力学可逆过程,与二次电池不同但与静电类似。法拉第电容和双电层电容的区别在于:

双电层电容在充电过程中需要消耗电解液,而法拉第电容在整个充放电过程中电解液的浓度保持相对稳定。

法拉第准电容不仅在电极表面产生,而且还可以在电极内部产生,其最大充放电能力由电活性物质表面的离子取向和电荷转移速度控制,因此可以在短时间内进行电荷转移,即可以获得更高的比功率(比功率大于500w /kg )。

二、超级电容器的特点。

超级电容器具有优良的脉冲充放电和大容量储能性能,单体容量已经达到万法拉级是一种介于静电电容器与电池之间的储能元件。与普通电容器和电池相比,超级电容器具有许多电池无法比拟的优点。

1.具有极高的功率密度。电容器的功率密度为电池的10~100倍,可达到10kw /kg 左右,可以在短时间内放出几百到几千安培的电流。

这个特点使得超级电容器非常适合用于短时间高功率输出的场合。

2.充电速度快。超级电容器充电是双电层充放电的物理过程或是电极物质表面的快速、可逆的化学过程,可采用大电流充电,能在几十秒到数分钟内完成充电过程,是真正意义上的快速充电。

而蓄电池则需要数小时完成充电,采用快速充电也需要几十分钟。

3.使用寿命长。超级电容器充放电过程中发生的电化学反应都具有良好的可逆性,不易出现类似电池中活性物质那样的晶型转变、脱落、枝晶穿透隔膜等一系列的寿命终止现象,碳极电容器理论循环寿命为无穷大, 实际可达100000 次以上,比电池高10 ~100倍。

4.低温性能优越。超级电容充放电过程中发生的电荷转移大部分都在电极活性物质表面进行,所以容量随温度衰减非常小。电池在低温下容量衰减幅度却可高达70% 。

三、超级电容器的分类。

超级电容的分类有许多不同的方式。

按采用的电极不同,超级电容可以分为以下3 种:

1.碳电极电容器:碳电极电容器的研究历史较长。

19 62 年,标准石油公司(soh io)认识到燃料电池中石墨电极表面双层电容的巨大利用价值,并生产出了工作电压为6v 的以碳材料作为电极的电容器。电容器的大小和汽车蓄电池的大小差不多,可以驱动小舟在湖面上行驶十分钟左右。稍后,这项技术转让给了日本nec电气公司,该公司从19 79 年开始一直生产超级电容器,并将这项技术应用于电动汽车的电机启动系统,开始了电化学电容器的大规模商业应用。

与此同时,日本松下公司设计了以活性炭为电极材料,以有机溶液为电解质的超级电容器。

碳电极电容器的电容大小与电极的极化电位及电极表面积大小有关,故可以通过极化电位的升高和增大电极表面积达到提高电容量的目的。电极p电解质双电层上可贮存的电量其典型值约为15~40 μf·cm - 2.选用具有高表面积的高分散电极材料可以获得较高的电容。

对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极表面积来增加电容值。电容c 可由下式给出:

式中:ε0 为自由空间的绝对介电常数,ε为电导体和内部h elmhotz 面间区域的相对介电常数,a 为电极表面积,d 为导体与内h elmhotz 面之间的距离。近年来研究主要集中在提高碳材料的表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有:

活性碳粉、活性炭纤维、碳气凝胶、碳纳米管等。

2.***氧化物电极电容器:对***氧化物电极电容器的研究,主要采用ruo2,iro2等***氧化物作为电极材料。

由于电极的导电性比碳电极好,电极在硫酸中稳定,可以获得更高的比能量,制备的电容器比碳电极电容器具有更好的性能,因此具有很好的发展前景。但是,由于ruo2 ***的资源有限、**昂贵限制了它的使用。以ruo2·nh 2o无定型水合物作电极,5.

3mol·l-1h2so4 作电解液所制得的电容器比电容能达到700f·g - 1;而以无定型水合物mno2·nh2o作电极,2m ol·l- 1kcl水溶液作电解液所制得的电容器比电容也可达到200f·g - 1.但比较而言,因为在中性kcl水溶液中材料比较稳定,不发生化学副反应,以kcl水溶液作电解液适用于多种电极材料。以ruo2作为电极材料的研究主要集中在电极制备方法上。

3.导电聚合物电极电容器:导电聚合物电极电容器作为一种新型的电化学电容器,具有高性能和比***超级电容器更优越的电性能。

可通过设计选择相应聚合物的结构,进一步提高聚合物的性能,从而提高电容器的性能。

导电聚合物电极电容器可分为3 种类型:对称结构--电容器中两电极为相同的可p型掺杂的导电聚合物(如聚噻吩);不对称结构--两电极为不同的可进行p型掺杂的聚合物材料(如聚吡咯和聚噻吩);导电聚合物可以进行p型和n 型掺杂,充电时电容器的一个电极是n型掺杂状态而另一个电极是p 型掺杂状态,放电后都是去掺杂状态,这种导电聚合物电极电容器可提高电容电压到3v,而两电极的聚合物分别为n 型掺杂和p 型掺杂时,电容器在充放电时能充分利用溶液中的阴阳离子,结果它具有很类似蓄电池的放电特征,因此被认为是最有发展前景的电化学电容器。研究工作主要集中在寻找具有优良掺杂性能的导电聚合物,提高聚合物电极的放电性能、循环寿命和热稳定等方面。

按储存电能的机理,超级电容器可分为以下2种:

一种是“双电层电容器”,其电容的产生主要基于电极p电解液上电荷分离所产生的双电层电容,如碳电极电容器;另一种则被称为“法拉第准电容”,由***和***氧化物电极等组成,其电容的产生是基于电活性离子在***电极表面发生欠电位沉积,或在***氧化物电极表面及体相中发生的氧化还原反应而产生的吸附电容,该类电容的产生机制与双电层电容不同,并伴随电荷传递过程的发生,通常具有更大的比电容。

根据超级电容器的结构及电极上发生反应, 又可分为以下2种如果两个电极的组成相同且电极反应相同,反应方向相反,则被称为对称型。碳电极双电层电容器,***氧化物电容器即为对称型电容器。如果两电极组成不同或反应不同,则被称为非对称型,由可以进行n型和p 型掺杂的导电聚合物作电极的电容器即为非对称型电容器,其性能表现形式更接近蓄电池,表现出更高的比能量和比功率。

根据超级电容器的电解质来分,又可分为以下2种:

超级电容器的最大可用电压由电解质的分解电压所决定。电解质可以是水溶液(如强酸或强碱溶液)也可是有机溶液(如盐的质子惰性溶剂溶液)。用水溶液体系可获得高容量及高比功率(因为水溶液电解质电阻较非水溶液电解质低,水溶液电解质电导为10- 1~10- 2s·cm - 1,而非水溶液体系电导则为10- 3~10- 4s·cm - 1)选用有机溶液体系则可获得高电压(因为其电解质分解电压比水溶液的高,有机溶液分解电压约3.

5v,水溶液则为1.2v),从而也可获得高的比能量。

四、超级电容的应用。

超级电容器产品虽然问世不久而且相对较少,但由于它具有特殊的优点,在许多领域获得应用,其前景是十分光明的。

混合型电动车的加速或启动电源。

由maxwell technolog ies公司生产的power cache超级电容器,已由通用汽车公司allisontransm ission division组成并联混合电源系统和串联电源系统用在货车和汽车上。allison期望maxwell超级电容有6年以上的使用寿命。跟相应的蓄电池组比起来,超级电容的储能装置重量只有前者的1/3,体积只有前者的1/2.

ise resarch - th und er volt公司也将parer cach e 超级电容器用于其新开发的重型混合电力推进系统th und er pack.该系统是将149 个maxwell的pc2500超级电容器装到一个用风扇冷却的铝套内。每个贮能堆可以贮存或释放150kw 的电力,双连体可达到300kw ,完全满足了大型汽车或卡车加速时的需求。

第一个th und er堆交给拉斯维加斯的nevada大学做混合动力车试验。

将蓄电池与超级电容结合起来,他们的优点可以互补,成为一个极佳的贮能系统。maxwell公司和exid e 公司联合开发这一组合系统,用于卡车低温起动、中型和重型卡车、陆上和地下的军事用车,它在大电流以及高低温条件下工作,都会有很长的寿命。

电容器的基础知识及失效模式

电容器的基础知识的讲义。孔星。1.电容器的基本概念。a.电容 使导体每升高单位电位所需要的电量。c q u 库仑 伏特 b.单位 法拉 f 1f 1库仑 1伏特 106 f 1012pf 1 f 103nf c.电容器 由多个导电体组成的能够存储电荷的容器。cab qa ua ub d.电容器的联接...

电容基础知识

1什么是电容。电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电,当然还有整流 振荡以及其它的作用。另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成,就像三明治一样,所以电容类型主要是由电极和绝缘介质决定的。电容是电子设备中最基础也是最重要的元件之一。电容的产量占...

摄影基础知识详解

攝影基礎知識詳解。一 光線和暴光。膠片 感光傳感器。膠片的主要參數是指膠片的感光度,用iso值來標示 international standards organization的簡稱 iso值越大,膠片 感光傳感器的感光度越高,越容易暴光。光圈。相機鏡頭內有一組重疊的金屬葉片,其所圍成的孔徑大小和開放...